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LIGHT DISTRIBUTION NEAR THE LINE FOCUS 

IN A HSURIA LASER RESONATOR 

INTRODUCTION 

The half-sphfrital unstable resonator with internal a:aeon fHSURIA) has been devel- 
oped for use with UK and DF lasers [11. It appears to be particularly well suited to high- 
energy chemical lasers of this type chiefly because of its accommodation of a thin cylindri- 
cal gain medium, its high output coupling, and its relatively compact optical configuration. 
The HSURIA does present some serious difficulties, however. First, it appears highly doubt- 
ful that th^ HSURIA can contain a simple low-order optical mode which produces the 
preferred output beam with a Gaussian intensity profile |21. Second, it appears that for 
high-energy systems there is a gas-breakdown problem for operation at atmospheric pressure. 
It is this second problem which is addressed in the present report. 

The gas-breakdown problem results from the use of the coni -al reflector at the back of 
the annular gain region as shown in Fig. 1. The most basic HSURIA resonator as shown in 
the figure consists, from left to right, of a convex spherical front mirror, an axicon com- 
bined with an conical reflector (sometimes called a reflaxicon), the annular gain medium, 
and a second conical reflector which serves as the back mirror for the resonator. The annular 
gain medium results from constraints placed on the laser system by the present design of the 
gas-flow system for the HF and DF lasers and appears to be unavoidable, at least for the 
present. The reflaxicon and conical back reflector are used to accommodate this restriction 
on gain-medium geometry. It does not appear possible to replace the troublesome back 
reflector by a plane mirror. This results in high alignment sensitivity. In experiments with 
HSURIA resonators it is nearly impossible to align and hold such a mirror in place ac- 
curately enough to achieve a steady mode [3]. The conical hack mirror shown in the figure 
solves this problem nicely but introduces a new problem, the gas-breakdown problem 
considered here. 

The conical back reflector removes the alignment sensitivity, but it brings the field 
inside of the resonator to a diffraction-limited line focus at which all of the energy is con- 
centrated along a line a few centimeters long. Clearly for sufficiently high energy systems 
such a focusing of the field inside of the resonator will cause gas breakdown, prevent proper 
operation, and possibly damage laser components. Thus the output power will be severely 
limited, at least for lasers operated with the resonator containing a gas at atmospheric 
pressure. 

In this report a theoretical study is presented in which the fields associated with the 
line focus are derived, the maximum laser output beam energy is calculated for operation at 
atmospheric pressure, and possible solutions to this problem are discussed. 

Manuscript submitted June 20, 1979. 
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where 

m = v/l-P2-Q2. (3) 

By substituting Kq. (1) into (2), we have 

tfo.hßäl-    ff       l.e**'' coS(kmz)dpe-k2o2''2t2ei''*y dq. (4) 

P2^a<l 

We note that if we assume o/X is large, the kernel of the integral over q contributes prin- 
cipally only in the neighborhood where g * 0. This approximation will be justified later. 
Thus we can substitute the asymptotic approximation to Eq. (3), namely, 

m -v Vl.p2  + o(q2>, 

q-*0 

(5) 

into Eq. (4) to obtain 

*(*) 'v 
2^ f   e-k2o2

q
2l2eikqy dq    f   _L-  eikxPCos{k\/l-p2z)dp, 

a]\- -1 -1 
vTTi 

(6) 

so that the integrals become independent. The first integral in Eq. (6) is tabulated (as in 
Ref. 8, p. 85, Eq. (710.0)). Evaluating the first integral, while making the transformation 
of variables 

p = cos0, vi-p2 = sin0,dp =-sin 0 d0, (7) 

we obtain 

  7r/2 

^ 'V^re":y2^02 J    4 cos (ft* cos 0) cos (fez sin 0) do. 
o/X->« 0 

(8) 
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The integral in Eq. (8) is evaluaUnl in the Appendix, which gives 

ff/2 

f co8(fejtcosO)cos(^sinO)dO=| J0(feN/*^+'j2)- (9) 

By substituting (9) into (8) we have 

o/X-*00 

(10) 

which is the field amplitude over the focal region. (Equation (34) of Ref. 9 is a similar 
result found in a different manner.) 

Since it is the intensity of the field at focus which causes the gas-hreakdown problem, 
we use Eq, ()0) to calculate the intensity as 

l{x) ■ l«h*)l2 ■ l0 f**10* J] (feV*2 + ^ )• (11) 

We can now justify the asympototic approximation made in Eq, (6) that a/X -» t». Erom Eq. 
(11) we see that o/X represents the length of the focal line in wavelengths, which for all 
practical situations is a large number (of the order of lO5). 

We note that the intensity over the line focus is different from the well-known Airy 
disk pattern 

Kx) = /0 fear 
(12) 

which represents the intensity distribution about the point focus formed by a lens with an 
angular aperture a [10, section 8.5.2]. Comparison of these two functions in Eig. 2 for the 
optimum cast1 (ot = 1) indicates that the line focus is slightly sharper but otherwise ap- 
parently similar. However, a calculation of the energy contained within a cylinder of radius 
a centered on the focal line indicates that the line focus as given by Eq. (11) has unusual 
properties. 
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(a) Line focus 

Kig. 2 - Comparison of the radial dependence of two focal field intensities 

(b) Point focus [10, section 8.5.2] 

We obtain the .nerg, -ntained over the line ^«i^^^^-" 
ter-d on the y axis by simply Integrating the intenaty ov* r th« mtenor o 

a     2(T     w» 

e= f f    I    l(x)rdydOdr. 

0     0.« 

(13) 

By substitute E,. ,11) into (13) and c^ing out th. intention using a tabuiatad integ.ai 
[11, section 11.3.341, we find that 

= ff3/2aa
2/0U(fea) + ^(''«)] (14) 

For larger fea, so that the 
radiation, we have 

radius of the cylinder is much larger than the wavelength of the 

a/0 (15) 
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where we have used the asymptotic form for the Bessel functions (11, section 9.2.1). From 
Eq. (15) we see that the energy increases linearly with radius a. Thus the energy is not 
restricted to the region near the focal line but extends away from it even into the far field. 
This is strikingly different from the conventional point focus. In Fig, 3 the energy con- 
tained within a circle of radius o about a conventional point focus as given by Bom and Wolf 
[10, Fig. 8.13) is plotted along with the energy contained within a cylinder of radius o 
about the line focus as given by Eq. (14). We see that whereas more than 90% of all the 
energy in the focal plane is contained within the second dark ring of the Airy disk pattern, 
the energy associated with the line focus is not concentrated so much near the focal line. 
Every annular region of differential radius dr out perpendicular from the line focus contains 
the same amount of energy given from Eq. (15) by 

o/„ 
de ^ 2 v/ff-fc0^- (16) 

So the energy is distributed over all space in this manner. 

The total energy over the surface of the reflector R is given by 

ER = 2ira /   Hx)dy, (17) 

nlHM2 (Jilka) 4 jf (ka^ 

2ND DARK RINQ , 

(a) Line focus 

I.U 

0.8 ^-H "WD DMK mHQ 

f    1ST DARK RING 

0.« / 

0.4 
/              1 - (j|(ka) + Jf (tu)] 

0.2 •    / 

0 /__i   .J 1—J 1 1 1—i 1— 
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(b)Pointfocu» [10, Fig. 8.13) 

Fig. 3 — Comparison of the energy within a region of radius 
a from the center of focus for two fields 
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where we neglect the angle the surface of R makes with respect to the y axis and assume 
that the reflector is parallel to a cylinder of radius a normal to the y axis. By substituting 
Eq. (11) into (17) and using a tabulated integral [12, Eq. (860.11011 we find that 

ZW*'8«/, Jim. o-o ■18) 

By making use of the asymptotic approximation to ^(/ea) for large fea [11, Eq. 9.2,1)1, 
we have 

E. 

ka 

M/oC082(fco.|; (19) 

We may now calculate the total energy output from the laser. The energy given by Eq. (19) 
is that contained in the standing wave inside of the laser resonator at the surface of the back 
reflector. The traveling waves each carry half the peak energy in the interference pattern 
represented by Eq. (19). Thus the power carried by the traveling wave inside of the resona- 
tor is just 

(20) 

where c is the speed of light. If we let o represent the coupling parameter defined by 

Pi 
(21) 

where p0 is the power in the output beam and p, is the power in the traveling wave inside 
the resonator, then from Eq. (20) the output power from the laser is just 

Po = aPi 
otcaXI, o (22) 

!f we assume that reasonable values for the various parameters in Eq. (22) are c/0 = 109 

W/cm2, a = l cm, \ = 3.8 X 10"4 cm, and a = 0.75, we find that for gas breakdown at 
109 W/cm2 light intensity the output beam of a DF laser operating at atmospheric pressure 
can carry no more than 160 kW of power*. 

•The breakdown threshold for 10.6-^^ radiation in air is of the order of ID9 W/cm2, as given in Ref. 13. 
For lar'i    f data we have assumed that this result is also approximately correct for breakdown over the DF 
and HI' imat wavelengths. 
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CONCLUSIONS AND RECOMMENDATIONS 

The HSURIA resonator as shown in Fin 1 appears to be unsuitable for high-power 
lasers unless gas breakdown can be prevdted somehow. The simplest way to solve the 
problem presently appears to be operation of the laser in vacuum. Where this is not 
practical, the resonator will have to be modified to eliminate the conical back reflector. 
Several modified resonators have been proposed which would do this. For example, one 
could replace the back reflector by a second reflaxicon and could add a simple back reflec- 
tor or comer cube to return the beam back into the reflaxicon. Instead of aiding the simple 
back reflector, one could bring the beam from the reflaxicon around into the other re- 
flaxicon to form a ring resonator. Alignment of two reflaxicons, however, is a severe prob- 
lem, but is is not clear that it can be avoided. 
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Appendix 

DERIVATION OF EQUATION (9) 

In this appendix a proof is derived for the integral formula 

*/2 

/ 
cos (kx cos 0) cos (kz sin ö) dö » -| JQ(ky^~* *2 j 

(Al) 

We expand the two cosine factors in the kernel using the formulas* 

cos (d*co,ÖW0(M + 2    £   {.lfjiii{kx)emm) 

n-l 
(A2) 

and 

cos(tesinö)-J0(fe) + 2   ^   J2i(kz)cos(2W) 

2-1 

and interchange the order of summation and integration to obtain an infinite series of 
The first term is 

(A3) 

terms. I 

ir/2 

Jo(kx)J0^)dd'^J0(kx)JQ(kz), (A4) 

*M. AbramowiU and LA. Stegun, Handbook of Mathematical Functions, National Bureau of SUndards, 
Washington, D.C., 1964, Eqs. (9.1.41) and (9.1.44). 
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in which the integration is trivial. The higher order terms (n ^ 1, K > 1) are of the form 

n/J 

H-lf Jilt{kr) J2iikz) f  co8(2nÖ)cO8(2S0)d0-O,JfnitC, 

o 

m(-lf*JiH(kx)JiH(ki), lfn-fi. 

(A5) 

in which the integral is easily evaluated by making the change of variables 0' = 20 and using 
the orthogonality relation* 

I   cos (mo') cos {n$') do' = 0, if m # n 

2 , if m = n. 

Thus from Eqs. (A4) and (A5) we have 

(A6) 

t/a 

/ 
cos {kx cos 6) cos (kz smO) dd = — 

m 
J0(kx) J0{kz) 

+ 2   J] (-l)nJ2n(kx)J2n{kz)\. 

n-1 J 

(A7) 

The right-hand side of Eq. (7A) has the form of the right-hand side of the "summation 
theorem* t: 

J0{ky/x2*22 ) - J0(kx) JQ(kz) + 2    J] (-1)" J2n{kx) J2n{kz). 

n-1 

(A8) 

By substituting Eq. (A8) into (A7), we obtain (Al), and the proof is complete. 

•H.B. Dwight, Table» of IrttegraU, McMillan, New York, 1961, Eq. (858.517). 
tl.S. Gradahteyn and IM. Ryzhik, Table of Integrals, Serie», and Product», 4th edition, Academic Press, 

New York, 196B, Eq. (8.531-1), In which we set 0* ir/2,p- kx, r- kz, and m - 1. 
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